Bài 4 trang 141 sgk đại số 11

Bình chọn:
4.3 trên 14 phiếu

Cho hàm số

Bài 4. Cho hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) và \(g(x) = tanx + sin x\).

Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.

Giải:

+) Hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) xác định khi và chỉ khi \(x^2+ x - 6 ≠ 0 \Leftrightarrow x ≠ -3\) và \(x ≠ 2\).

Hàm số \(f(x)\) liên tục trên các khoảng \((-∞; -3), (-3; 2)\) và \((2; +∞)\)

+) Hàm số \(g(x) = tanx + sinx\) xác định khi và chỉ khi 

\(tanx ≠ 0\Leftrightarrow x ≠ \frac{\pi }{2} +kπ\) với \(k ∈ Z\).

Hàm số \(g(x)\) liên tục trên các khoảng \(( - \frac{\pi }{2}+kπ;  \frac{\pi }{2}+kπ)\) với \(k ∈ \mathbb Z\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan