Bài 4 trang 12 sgk hình học lớp 10


Bài 4 .Cho tam giác ABC. Bên ngoài tam giác vẽ các hình bình hành

Bài 4 .Cho tam giác \(ABC\). Bên ngoài tam giác vẽ các hình bình hành \(ABIJ, BCPQ, CARS\). Chứng minh rằng \(\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS}=  \overrightarrow{0}\)

Giải

Ta xét tổng:

\(\overrightarrow{RJ} + \overrightarrow{JI} +\overrightarrow{IQ} + \overrightarrow{QP}+\overrightarrow{PS}+ \overrightarrow{SR} = \overrightarrow{RR}= \overrightarrow{0}\)(1)

Mặt khác, ta có \(ABIJ, BCPQ\) và \(CARS\) là các hình bình hành nên:

\(\overrightarrow{JI}\)  = \(\overrightarrow{AB}\)

\(\overrightarrow{QP}\) = \(\overrightarrow{BC}\)

\(\overrightarrow{SR}\) = \(\overrightarrow{CA}\)

\(\Rightarrow \overrightarrow{JI}+\overrightarrow{QP}+\overrightarrow{SR}= \overrightarrow{AB}+ \overrightarrow{BC}+\overrightarrow{CA}= \overrightarrow{AA}= \overrightarrow{0}\)(2)

Từ (1) và (2) suy ra : \(\overrightarrow{RJ}\) + \(\overrightarrow{IQ}\) + \(\overrightarrow{PS}\)=  \(\overrightarrow{0}\) (đpcm)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu