Bài 4 trang 104 sgk toán 11


Bài 4. Tìm cấp số nhân có sau số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.

Bài 4. Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).

Hướng dẫn giải:

Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)

Theo giả thiết ta có:

               \({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\).        (1)

               \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\).        (2)

Nhân hai vế của (1) với \(q\), ta được:  \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)

 hay  \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)

Suy ra \(62 = 31.q\) hay \(q = 2\).

Ta có \(S_5= 31 = {{{u_1}(1 - {2^5})} \over {1 - 2}}\) nên suy ra \(u_1= 1\).

Vậy ta có cấp số nhân \(1, 2, 4, 8, 16, 32\).     

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu