Bài 39 trang 83 sgk Toán lớp 9 tập 2


Bài 39. Cho AB và CD là hai đường kính vuông góc của đường tròn (O)

Bài 39. Cho \(AB\) và \(CD\) là hai đường kính vuông góc của đường tròn \((O)\). Trên cung nhỏ \(BD\) lấy một điểm \(M\). Tiếp tuyến tại \(M\) cắt tia \(AB\) ở \(E\), đoạn thẳng \(CM\) cắt \(AB\) ở \(S\).Chứng minh \(ES = EM\).

Hướng dẫn giải:

Ta có \(\widehat{MSE}\) = \(\frac{sđ\overparen{CA}+sđ\overparen{BM}}{2}\) (1)

( vì \(\widehat{MSE}\) là góc có đỉnh S ở trong đường tròn (O))

\(\widehat{CME}\) = \(\frac{sđ\overparen{CM}}{2}\)= \(\frac{sđ\overparen{CB}+sđ\overparen{BM}}{2}\) (2)

(\(\widehat{CME}\) là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết         \(\overparen{CA}=\overparen{CB}\)           (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE}\) = \(\widehat{CME}\) từ đó \(∆ESM\) là tam giác cân và \(ES = EM\)

loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu