Bài 37 trang 123 - Sách giáo khoa toán 7 tập 1

Bình chọn:
4.7 trên 92 phiếu

Bài 37. Trên mỗi hình 101,102,103 có tam giác nào bằng nhau? Vì sao?

Bài 37. Trên mỗi hình 101,102,103 có tam giác nào bằng nhau? Vì sao?

Giải:

Tính các góc còn lại trên mỗi hình trên ta được:

Áp dụng định lí tổng ba góc trong một tam giác ta có:

\(\eqalign{
& \widehat A = {180^0} - \widehat B - \widehat C = {180^0} - {80^0} - {40^0} = {60^0} \cr
& \widehat H = {180^0} - \widehat G - \widehat I = {180^0} - {30^0} - {80^0} = {70^0} \cr
& \widehat E = {180^0} - \widehat D - \widehat F = {180^0} - {80^0} - {60^0} = {40^0} \cr
& \widehat L = {180^0} - \widehat K - \widehat M = {180^0} - {80^0} - {30^0} = {70^0} \cr
& \widehat {QNR} = {180^0} - \widehat {NRQ} - \widehat {RQN} = {180^0} - {40^0} - {60^0} = {80^0} \cr
& \widehat {NRP} = {180^0} - \widehat {RPN} - \widehat {PNR} = {180^0} - {60^0} - {40^0} = {80^0} \cr} \)

- Xét \(∆ABC\) và \(∆FDE\) (Hình 101)

+) \(\widehat{B} = \widehat{D}\)

+) \(BC=DE\)

+) \(\widehat{C}=\widehat{E}\)

Suy ra \(∆ABC=∆FDE\)  (g.c.g)

- Xét  \(∆NQR\) và \(∆RPN\) (Hình 103)

+) \(\widehat{QNR}=\widehat{NRP}\)  (\(=80^0\))

+) \(NR\) là cạnh chung.

+) \(\widehat{NRQ}=\widehat{RNP}\)  (\(40^0\))

Suy ra \(∆NQR=∆RPN\)  (g.c.g)

- Xét \(\Delta HIG\) và \(\Delta LKM\) (Hình 102)

\(\eqalign{
& + )\,\,GI = ML \cr 
& + )\,\,\widehat G = \widehat M \cr 
& + )\,\,\widehat I = \widehat K \cr} \)

Ta có: \(\widehat G,\; \widehat I\) cùng kề với cạnh \(GI\), còn \(\widehat M \) kề với cạnh \(ML\) nhưng \( \widehat K\) không kề với cạnh \(ML\) nên \(\Delta HIG\) không bằng \(\Delta LKM\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 7 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan