Bài 35 trang 22 sgk toán 7 tập 1


Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết

Bài 35 Ta thừa nhận tính chất sau đây: Với a # 0, a # ± 1, nếu \(a^{m}=a^{n}\) thì m = n.  Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết

a) \((\frac{1}{2})^{m} = \frac{1}{32}\)

b) \(\frac{343}{125} = (\frac{7}{5})^{n}\)

Lời giải:

a)   \(( \frac{1}{2})^{m} = \frac{1}{32}\) => \((\frac{1}{2})^{m} = \frac{1}{2^{5}} => (\frac{1}{2})^{m} = (\frac{1}{2})^{5} => m = 5\)

b)    \(\frac{343}{125} = (\frac{7}{5})^{n}\) => \(\frac{7^{3}}{5^{3}} = (\frac{7}{5})^{n} => (\frac{7}{5})^{3} = (\frac{7}{5})^{n} => n =3\)                    

>>>>> Học tốt lớp 8 các môn Toán, Văn, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu