Bài 35 trang 123 - Sách giáo khoa toán 7 tập 1


Bài 35. Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua H thuộc tia Ot , kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B.

Bài 35. Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua H thuộc tia Ot , kẻ  đường vuông góc với Ot, nó cắt Ox và Oy  theo thứ tự  A và B.

a) Chứng minh rằng OA=OB.

b ) Lấy điểm C thuộc tia Ot, chứng minh rằng CA=CB và \(\widehat{OAC }\)= \(\widehat{OBC }\).

Giải

a) ∆AOH và  ∆BOH có:\(\widehat{AOH}\)=\(\widehat{BOH}\)(gt)

OH là cạnh chung

 ∆AOH =∆BOH( g.c.g)

Vậy OA=OB.

b)  ∆AOC và ∆BOC có:

OA=OB(cmt)

\(\widehat{OAC}\)=\(\widehat{OAB}\)(gt)

OC cạnh chung.

Nên  ∆AOC= ∆BOC(g.c.g)

Suy ra: CA=CB(cạnh tương ứng)

\(\widehat{OAC }\)= \(\widehat{OBC }\)( góc tương ứng).

>>>>> Học tốt lớp 8 các môn Toán, Văn, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu