Bài 33 trang 80 sgk Toán lớp 9 tập 2


Cho A, B, C là ba điểm của một đường tròn

Bài 33. Cho \(A, B, C\) là ba điểm của một đường tròn. \(At\) là tiếp  tuyến của đường tròn tại \(A\). Đường thẳng song song với \(At\) cắt \(Ab\) tại \(M\) và cắt \(AC\) tại \(N\).

Chứng minh: \(AB. AM = AC . AN\)

Hướng dẫn giải:

Ta có \(\widehat M = \widehat {BAt}\) (so le trong)   (1)

          \(\widehat {BAt} = \widehat C\)                     (2)

(góc tạo bởi tiếp tuyến và dây cung, chắn cung \(AB\), \(\widehat C\) là góc nội tiếp chắn cung \(AB\))

Từ (1) và (2) suy ra:

                     \(\widehat M = \widehat C\)              (3)

Xét hai tam giác \(AMN\) và \(ACB\). chúng có:

             \(\widehat A\) chung

             \(\widehat M = \widehat C\)

Vậy \(∆AMN\) đồng dạng \(∆ACB\), từ đó \({{AN} \over {AB}} = {{AM} \over {AC}}\),

suy ra \(AB. AM = AC . AN\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu