Bài 33 trang 23 sgk toán 8 tập 2

Bình chọn:
4.1 trên 64 phiếu

Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

a) \({{3a - 1} \over {3a + 1}} + {{a - 3} \over {a + 3}}\)                           b) \({{10} \over 3} - {{3a - 1} \over {4a + 12}} - {{7a + 2} \over {6a + 18}}\)

Hướng dẫn làm bài:

a)Ta có phương trình:\({{3a - 1} \over {3a + 1}} + {{a - 3} \over {a + 3}} = 2\); ĐKXĐ: \(a \ne  - {1 \over 3},a \ne  - 3\)      

Khử mẫu ta được :

\(\left( {3a - 1} \right)\left( {a + 3} \right) + \left( {a - 3} \right)\left( {3a + 1} \right) = 2\left( {3a + 1} \right)\left( {a + 3} \right)\)

⇔\(3{a^2} + 9a - a - 3 + 3{a^2} - 9a + a - 3 = 6{a^2} + 18a + 2a + 6\)

⇔\(6{a^2} - 6 = 6{a^2} + 20a + 6\)

⇔\(20a =  - 12\)

⇔\(a =  - {3 \over 5}\)

\(a =  - {3 \over 5}\) thỏa ĐKXĐ.

Vậy \(a =  - {3 \over 5}\)  thì biểu thức \({{3a - 1} \over {3a + 1}} + {{a - 3} \over {a + 3}}\) có giá trị bằng 2         

b)Ta có phương trình:\({{10} \over 3} - {{3a - 1} \over {4a + 12}} - {{7a + 2} \over {6a + 18}} = 2\)

ĐKXĐ:\(a \ne 3;MTC:12\left( {a + 3} \right)\)

Khử mẫu ta được:

 \(40\left( {a + 3} \right) - 3\left( {3a - 1} \right) - 2\left( {7a + 2} \right) = 24\left( {a + 3} \right)\)

⇔\(40a + 120 - 9a + 3 - 14a - 4 = 24a + 72\)

⇔\(17a + 119 = 24a + 72\)

⇔\( - 7a =  - 47\)

⇔\(a = {{47} \over 7}\)

\(a = {{47} \over 7}\) thỏa ĐKXĐ.

Vậy \(a = {{47} \over 7}\)  thì biểu thức \({{10} \over 3} - {{3a - 1} \over {4a + 12}} - {{7a + 2} \over {6a + 18}}\)  có giá trị bằng 2.

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan