Bài 32 trang 23 sgk toán 8 tập 2

Bình chọn:
4 trên 79 phiếu

Giải các phương trình:

Giải các phương trình:

a) \({1 \over x} + 2 = \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right)\) ;                          

b) \({\left( {x + 1 + {1 \over x}} \right)^2} = {\left( {x - 1 - {1 \over x}} \right)^2}\)

Hướng dẫn làm bài:

a) \({1 \over x} + 2 = \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right)\)     (1)

ĐKXĐ:\(x \ne 0\)

(1)  ⇔\(\left( {{1 \over x} + 2} \right) - \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right) = 0\)

\(\Leftrightarrow \left( {{1 \over x} + 2} \right)\left( {1 - {x^2} - 1} \right) = 0\)

⇔ \(\left( {{1 \over x} + 2} \right)\left( { - {x^2}} \right) = 0\)

⇔\(\left[ {\matrix{{{1 \over x} + 2 = 0} \cr { - {x^2} = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{1 \over x} = - 2} \cr {{x^2} = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {1 \over 2}} \cr {x = 0} \cr} } \right.\)

b) \({\left( {x + 1 + {1 \over x}} \right)^2} = {\left( {x - 1 - {1 \over x}} \right)^2}\) (2)

ĐKXĐ: \(x \ne 0\)

(2)  ⇔\(\left[ {\matrix{{x + 1 + {1 \over x} = x - 1 - {1 \over x}} \cr {x + 1 + {1 \over x} = - \left( {x - 1 - {1 \over x}} \right)} \cr} } \right.\)

⇔\(\left[ {\matrix{{{2 \over x} = - 2} \cr {2x = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = - 1} \cr {x = 0} \cr} } \right.} \right.\)

x=0 không thoả ĐKXĐ.

Vậy phương trình có nghiệm duy nhất

Vậy phương trình có nghiệm duy nhất x = -1.

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan