Bài 31 trang 23 sgk toán 9 tập 2


Tính độ dài hai cạnh góc vuông của một tam giác vuông, biết rằng nếu tang mỗi

31. Tính độ dài hai cạnh góc vuông của một tam giác vuông, biết rằng nếu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng them 36 cm2, và nếu một cạnh giảm đi 2cm, cạnh kia giảm đi 4 cm thì diện tích của tam giác giảm đi 26 cm2

Bài giải:

Gọi x (cm), y (cm) là độ dài hai cạnh góc vuông của tam giác vuông. Điều kiện x > 0, y > 0.

Tăng mỗi cạnh lên 3 cm thì diện tích tăng them 36 cm2 nên ta được:

\(\frac{(x + 3)(y + 3)}{2}\)= \(\frac{xy}{2}\) + 36

Một cạnh giảm 2 cm, cạnh kia giảm 4 cm thì diện tích của tam giác giảm 36 cm2 nên ta được

\(\frac{(x - 2)(y- 4)}{2}\) = \(\frac{xy}{2}\) - 26

Ta có hệ phương trình \(\left\{\begin{matrix} (x + 3)(y + 3)= xy + 72 & & \\ (x -2)(y - 4)= xy -52 & & \end{matrix}\right.\)

Giải ra ta được nghiệm x = 9; y = 12.

Vậy độ dài hai cạnh góc vuông là 9 cm, 12 cm.

>>>>> Học tốt lớp 10 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu