Bài 30 trang 67 sgk toán lớp 7- tập 2


Gọi G là trọng tâm của tam giác ABC

30. Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G’ sao cho G là trung điểm của AG’

a) So sánh các cạnh của  tam giác BGG’ với các đường trung tuyến của tam giác ABC

b) So sánh các đường trung tuyến của tam giác BGG’ với các cạnh của tam giác ABC.

Hướng dẫn:

a) So sánh các cạnh của  ∆BGG’ với các đường trung tuyến của  ∆ABC BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của  ∆ABC

 => GA = AM

Mà GA = GG’ ( G là trung điểm của AG ‘)

GG’ = AM

Vì G là trọng tâm của  ∆ABC => GB = BN

Mặt khác : GM = AG ( G là trọng tâm )

AG = GG’ (gt)

  GM = GG’

M là trung điểm GG’

Do đó  ∆GMC =  ∆G’MB vì :

GM = MG’

MB = MC

=> BG' = CG

mà CG = CE (G là trọng tâm  ∆ABC)

=> BG' = CE

Vậy mỗi cạnh của ∆BGG' bằng  đường trung tuyến của ∆ABC

b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC

ta có: BM là đường trung tuyến ∆BGG'

mà M là trung điểm của BC nên BM = BC

Vì IG = BG (I là trung điểm BG)

GN = BG ( G là trọng tâm)

=> IG = GN

Do đó ∆IGG' = ∆NGA (cgc)  => IG' = AN  => IG' = 

- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'

Vì GE = GC (G là trọng tâm ∆ABC)

=> GE = BG

mà K là trung điểm BG' => KG' = EG

Vì ∆GMC = ∆G'BM (chứng minh trên)

=>  (lại góc sole trong)

=> CE // BG' =>  (đồng vị)

Do đó ∆AGE = ∆GG'K (cgc)  => AE = GK

mà AE = AB nên GK = AB

Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó

>>>>> Học tốt lớp 7 các môn Toán, Văn năm 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu

Bài viết liên quan