Bài 30 trang 22 sgk Toán 9 tập 2

Bình chọn:
4.1 trên 146 phiếu

Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h

30. Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với quy định. Tính độ dài quãng đường AB và thời điểm xuất phát của ôtô tại A.

Bài giải:

Gọi \(x \) (km) là độ dài quãng đường AB, \(y\) (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa. Điều kiện \(x > 0, y > 1\) (do ôtô đến B sớm hơn 1 giờ).

Thời gian đi từ A đến B với vận tốc 35km là: \(\frac{x}{35}= y + 2\).

Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{50} = y - 1\).

Ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{x \over {35}} = y + 2 \hfill \cr
{x \over {50}} = y - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 35(y + 2) \hfill \cr
x = 50(y - 1) \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
35(y + 2) = 50(y - 1) \hfill \cr
x = 35(y + 2) \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
35y + 70 = 50y - 50 \hfill \cr
x = 35(y + 2) \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
15y = 120 \hfill \cr
x = 35(y + 2) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 8 \hfill \cr
x = 35.(8 + 2) = 350 \hfill \cr} \right. \cr} \)

Vậy quãng đường AB là 350km.

Thời điểm xuất phát của ô tô tại A là: 12 - 8 = 4 giờ.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan