Bài 3 trang 61 sgk giải tích 12

Bình chọn:
4.4 trên 9 phiếu

Bài 3. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:

Bài 3. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:

a) \(y=x^{4\over3}\) ;

b) \(y=x^{-3}\).

Hướng dẫn giải:

a) Hàm số \(y=x^{4\over3}\)

Tập xác định: \(\mathbb R\).

Sự biến thiên:

 \(y' = {4 \over 3}{x^{{1 \over 3}}} \)

- Hàm số nghịch biến trên khoảng \((-\infty;0)\), đồng biến trên khoảng \((0;+\infty)\)

- Giới hạn đặc biệt:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \).

- Đồ thị hàm số không có tiệm cận.

- Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua \((1;1)\), \((2;\root 3 \of {{2^4}} )\).

b) \(y = {x^{ - 3}}\)

Tập xác định: \(D=\mathbb ℝ \backslash {\rm{\{ }}0\} \).

Sự biến thiên:

\(y' =  - 3{x^{ - 4}} < 0,\forall x \in D\)

- Hàm nghich biến trong khoảng \((-∞;0)\) và \((0; +∞)\).

- Giới hạn đặc biệt:

    \(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} y = + \infty \cr
& \mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \cr
& \mathop {\lim }\limits_{x \to \pm \infty } y = 0 \cr }\)

- Đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

- Bảng biến thiên

Đồ thị qua \((-1;-1)\), \((1;1)\), \(\left( {2;{1 \over 8}} \right)\), \(\left( {-2;{-1 \over 8}} \right)\). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọa độ.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan