Bài 3 trang 156 sách giáo khoa Đại số và Giải tích 11


3. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

Bài 3. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a) \(y = x^2+ x\) tại \(x_0= 1\);

b) \(y =  \frac{1}{x}\) tại \(x_0= 2\);

c) \(y = \frac{x+1}{x-1}\) tại \(x_0 = 0\).

Giải:

a) Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:

\(∆y = f(1 + ∆x) - f(1) = (1 + ∆x)^2+ (1 + ∆x) - (1^2+ 1)\)

\(= 3∆x + (∆x)^2\)

\( \frac{\Delta y}{\Delta x} = 3 + ∆x\); \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} (3 + \Delta x) = 3\)

Vậy \(f'(1) = 3\).

b) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:

\(∆y = f(2 + ∆x) - f(2) =  \frac{1}{2+\Delta x}  -  \frac{1}{2} = -  \frac{\Delta x}{2\left ( 2+\Delta x \right )}\);

\( \frac{\Delta y}{\Delta x}\) = -  \( \frac{1}{2\left ( 2+\Delta x \right )}\); \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( { - {1 \over {2.(2 + \Delta x)}}} \right) =  - {1 \over 4}\)

Vậy \(f'(2) = -   \frac{1}{4}\).

c) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:

\(∆y = f(∆x) - f(0) = \frac{\Delta x+1}{\Delta x-1}- ( -1) =  \frac{2\Delta x}{\Delta x-1}\);

\( \frac{\Delta y}{\Delta x}\) = \( \frac{2}{\Delta x-1}\) ; \( \mathop {\lim}\limits_{\Delta x\rightarrow 0}\) \( \frac{\Delta y}{\Delta x}\) = \( \mathop {\lim}\limits_{\Delta x\rightarrow 0}\)  \( \frac{2}{\Delta x-1} = -2\).

Vậy \(f'(0) = -2\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu