Bài 29 trang 79 sgk Toán lớp 9 tập 2


Cho hai đường tròn (O) và (O') cắt nhau tại A và B

Bài 29. Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến kẻ từ \(A\) đối với đường tròn (O') cắt (O) tại \(C\) đối với đường tròn \((O)\) cắt \((O')\) tại \(D\).

Chứng minh rằng \(\widehat {CBA} = \widehat {DBA}\).

Hướng dẫn giải:

Ta có \(\widehat {CAB} = \frac{1}{2}\widehat {AmB}\)  (1)

( vì \(\widehat {CAB}\) là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).

         \(\widehat {ADB} = \widehat {AmB}\)  (2)

góc nội tiếp của đường tròn (O') chắn \(\overparen{AmB}\)

Từ (1), (2) suy ra 

  \(\widehat {CAB} = \widehat {ADB}\)   (3)

Chứng minh tương tự với đường tròn \((O)\), ta có:

\(\widehat {ACB} = \widehat {DAB}\)  (4)

Hai tam giác \(ABD\) và \(ABC\) thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy  \(\widehat {CBA} = \widehat {DBA}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu