Bài 28 trang 80 sgk toán 8 tập 1

Bình chọn:
4.9 trên 155 phiếu

Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thằng EF cắt BD ở I, cắt AC ở K.

28. Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thằng EF cắt BD ở I, cắt AC ở K.

a) Chứng minh rằng AK = KC, BI = ID.

b) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.

Bài giải:

a) Vì EA = ED, FB = FC (gt)

Nên EF là đường trung bình của hình thang ABCD.

Do đó: EF // AB // CD

 ∆ABC có BF = FC và FK // AB

                          nên: AK = KC

               ∆ABD có AE = ED và EI // AB

nên: BI = ID

b) Vi EF là đường trung bình của hình thang ABCD.

nên EF = \(\frac{AB+CD}{2}\) = \(\frac{6+10}{2}\) = 8

EI là đường trung bình của ∆ABD nên EI = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).6 = 3 (cm)

KF là đường trung bình của  ∆ABC  nên KF = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).6 = 3 (cm)

Lại có EF = EI + IK + KF

nên IK = EF - (EI + KF) = 8 - (3 + 3) = 2 (cm)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan