Bài 25 trang 84 SGK Toán 9 tập 1

Bình chọn:
4.6 trên 10 phiếu

Giải bài 25 trang 84 SGK Toán 9 tập 1. So sánh: a) tag 25 độ và sin 25 độ, cotg 32 độ và cos 32 độ.

Đề bài

So sánh:

a) \(\tan 25^o\) và \(\sin 25^o\).

b) \(\cot 32^o\) và \(\cos 32^o\);

c) \(\tan 45^o\) và \(\cos 45^o\);

d) \(\cot 60^o\) và \(\sin 30^o\).

Phương pháp giải - Xem chi tiết

+)  Sử dụng các công thức định nghĩa tỉ số lượng giác. Chú ý rằng \(0< \cos \alpha,\ \sin \alpha < 1\) với \(0^o < \alpha < 90^o\). 

+) Sử dụng công thức tỉ số lượng giác của hai góc phụ nhau: nếu \(\alpha + \beta = 90^o\) thì:

                           \(\sin \alpha = \cos \beta\);          \(\cos \alpha = \sin \beta\).

Lời giải chi tiết

a) Ta có \(\tan 25^o = \dfrac{\sin 25^o}{\cos 25^o}\). Vì \(0< \cos 25^o < 1\)

\(\Rightarrow \dfrac{1}{\cos 25^o} > 1\)

\(\Leftrightarrow \sin 25^o . \dfrac{1}{\cos 25^o} > \sin 25^o\).

\(\Leftrightarrow  \dfrac{\sin 25^o}{\cos 25^o} > \sin 25^o\).

\(\Leftrightarrow  \tan 25^o > \sin 25^o\).

b) Ta có: \(\cot 32^o = \dfrac{\cos 32^o}{\sin 32^o}\). Vì \(0< \sin 32^o < 1\)

\(\Rightarrow \dfrac{1}{\sin 32^o} > 1\)

\(\Leftrightarrow \cos 32^o. \dfrac{1}{\sin 32^o} > 1.\cos 32^o\)

\(\Leftrightarrow  \dfrac{\cos 32^o}{\sin 32^o} > \cos 32^o\)

\(\Leftrightarrow  \cot 32^o > \cos 32^o\).

c) Ta có \(\tan 45^o = \dfrac{\sin 45^o}{\cos 45^o}\). Vì \(0< \cos 45^o < 1\)

\(\Rightarrow \dfrac{1}{\cos 45^o} > 1\)

\(\Leftrightarrow \sin 45^o . \dfrac{1}{\cos 45^o} > \sin 45^o\).

\(\Leftrightarrow  \dfrac{\sin 45^o}{\cos 45^o} > \sin 45^o\).

\(\Leftrightarrow  \tan 45^o > \sin 45^o\)

Mà \(\sin 45^o= \cos(90^o - 45^o)=\cos 45^o\)

Vậy \( \tan 45^o > \cos 45^o\).

d) Ta có: \(\cot 60^o = \dfrac{\cos 60^o}{\sin 60^o}\). Vì \(0< \sin 60^o < 1\)

\(\Rightarrow \dfrac{1}{\sin 60^o} > 1\)

\(\Leftrightarrow \cos 60^o. \dfrac{1}{\sin 60^o} > 1.\cos 60^o\)

\(\Leftrightarrow  \dfrac{\cos 60^o}{\sin 60^o} > \cos 60^o\)

\(\Leftrightarrow  \cot 60^o > \cos 60^o \).

Mà \(\cos 60^o = sin (90^o -60^o) = \sin 30^o\)

Do đó \( \cot 60^o > \sin 30^o\).

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan