Bài 23 trang 119 - Sách giáo khoa toán 9 tập 2

Bình chọn:
4 trên 5 phiếu

Bài 23 Viết công thức tính nửa góc ở đỉnh của một hình nón (góc a của tam giác vuông AOS- hình 99) sao cho diện tích khai triển mặt nón bằng một phần tư diện tích hình tròn (bán kính SA).

Bài 23 Viết công thức tính nửa góc ở đỉnh của một hình nón (góc \(a\) của tam giác vuông \(AOS\)- hình 99) sao cho diện tích khai triển mặt nón bằng một phần tư diện tích hình tròn (bán kính \(SA\)).

Giải:

Diện tích hình quạt : 

\(S_q = \frac{\pi r^2 n^o}{360^o}= \frac{\pi.l^2.90}{360}=\frac{\pi.l^2}4\)

Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\)

Theo đầu bài ta có: \({S_{xq}} = S_q \)=> \(πrl\)= \(\frac{\pi.l^2}4\)

Vậy \(l = 4r\) 

Suy ra \(sin(a) \)= \(\frac{r}l\) =\( 0,25\)

 Vậy \(a = {14^0}28'\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan