Bài 20 trang 15 sgk Toán 9 - tập 1

Bình chọn:
4.9 trên 48 phiếu

Bài 20. Rút gọn các biểu thức sau:

Bài 20. Rút gọn các biểu thức sau:

a) \( \sqrt{\frac{2a}{3}}\).\( \sqrt{\frac{3a}{8}}\) với a ≥ 0;

b) \( \sqrt{13a}.\sqrt{\frac{52}{a}}\) với a > 0;

c) \( \sqrt{5a}.\sqrt{45a}\) - 3a với a ≥ 0;

d) \( (3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\).

Hướng dẫn giải:

a)

  \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a.3a}{3.8}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\) (vì \(a\geq 0\))

b)

\(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{13.52a}{a}}=\sqrt{13.13.4}=13.2=26\) (vì \(a>0\))

c)

Do \(a\geq 0\) nên bài toán luôn được xác định có nghĩa.

\(\sqrt{5a}.\sqrt{45a}- 3a=\sqrt{5.5.9.a^2}-3a=15a-3a=12a\)

d)

\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\)

\((3-a)^2-\sqrt{2.18.a^2}=(3-a)^2-6|a|=a^2-6a-|6a|+9\)

TH1:\(a\geq 0\Rightarrow |a|=a\Rightarrow\) \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2-12a+9\)

TH2: \(a<0\Rightarrow |a|=-a\Rightarrow\)\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2+9\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan