Bài 2 trang 90 sgk giải tích 12


Bài 2: Giải các bất phương trình lôgarit

Bài 2: Giải các bất phương trình lôgarit:

a) log8(4- 2x) ≥ 2;

b)  > ;

c) log0,2x – log5(x- 2) < log0,23; 

d)  - 5log3x + 6 ≤ 0.

Hướng dẫn giải:

a) Điều kiện x ≤ 2.

Viết 2 =  ta có log8(4- 2x) ≥  ⇔ 4- 2x ≥ 64 ⇔ x ≤ -30.

b) b)  >  ⇔ 0 < 3x - 5 < x + 1 ⇔  < x < 3.

c) Điều kiện: x > 2. Chú ý rằng

log5(x- 2) =  = -log0,2(x- 2), nên bất phương trình đã cho tương đương với

log0,2x + log0,2(x- 2) < log0,23 ⇔ log0,2 x(x- 2) < log0,23 ⇔ x (x - 2) > 3 ⇔ 

x2- 2x – 3 > 0 ⇔ (x - 3) (x+ 1) > 0 ⇔ x - 3 > 0 ⇔ x > 3 (do x > 2).

d) Đặt t = log3x ta được bất phương trình 

t2 – 5t + 6 ≤  0 ⇔ 2 ≤ t ≤ 3. Trở ại biến cũ ta được 2 ≤ log3x ≤3 ⇔  ≤  log3x ≤   ⇔ 9 ≤ x ≤ 27.

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học.

Bài viết liên quan