Bài 2 trang 74 sgk đại số và giải tích 11


Có bốn tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên ba tấm.

Bài 2. Có bốn tấm bìa được đánh số từ \(1\) đến \(4\). Rút ngẫu nhiên ba tấm.

a) Hãy mô tả không gian mẫu.

b) Xác định các biến cố sau:

\(A\): "Tổng các số trên ba tấm bìa bằng \(8\)";

\(B\): "Các số trên ba tấm bìa là ba số tự nhiên liên tiếp".

c) Tính \(P(A), P(B)\).

Bài giải:

Phép thử \(T\) được xét là: "Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tấm".

a) Đồng nhất số \(i\) với tấm bìa được đánh số \(i\) = \(\overline{1,4}\), ta có: mỗi một kết quả có thể có của phép thử \(T\) là một tổ hợp chập \(3\) của \(4\) số \(1, 2, 3, 4\). Do đó không gian mẫu là:

\(Ω = \left\{{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}\right\}\).

Số phần tử của không gian mẫu là  \(n(Ω) = C_4^3 = 4\).

Vì lấy ngẫu nhiên, nên các kết quả có thể có của phép thử \(T\) là đồng khả năng.

b) \(A = \left\{{(1, 3, 4)}; B = {(1, 2, 3), (2, 3, 4)}\right\}\)

c) \(P(A) \)= \(\frac{1}{4}\);\( P(B)\) =\(\frac{2}{4}\) =  \(\frac{1}{2}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu