Bài 2 trang 71 sách giáo khoa hình học lớp 11


Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M và M' lần lượt là trung điểm của các cạnh BC và B'C'

Bài 2. Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\) và \(M'\) lần lượt là trung điểm của các cạnh \(BC\) và \(B'C'\)

a) Chứng minh rằng \(AM\) song song với \(A'M'\).

b) Tìm giao điểm của mặt phẳng \((AB'C')\) với đường thẳng \(A'M\)

c) Tìm giao tuyến \(d\) của hai mặt phẳng \((AB'C')\) và \((BA'C')\)

d) Tìm giao điểm \(G\) của đường thẳng \(d\) với mặt phẳng \((AM'M)\)

Chứng minh \(G\) là trọng tâm của tam giác \(AB'C'\).

Lời giải:

a) \(ABC.A'B'C'\) là hình lăng trụ tam giác nên ta có: \(AA'//MM'\) và \(AA'=MM'\) nên suy ra \(AA'M'M\) là hình bình hành.

Do đó: \(AM//A'M'\)

b) Trong \(mp (AA'M'M)\), gọi \(K=MA' ∩ AM' \),

\(K =A'M\cap (AB'C')\)

c) Trong \((ABB'A')\) gọi \(O= AB'\cap A'B\)

Do đó: \((AB'C')\cap (BA'C')=d ≡ C'O\)

d) Trong \((AB'C')\): gọi \(G= C'O ∩ AM'\),

\(G  \in AM'\subset ( AMM')\) nên \(G=d\cap (AMM')\).

Mà \(O, M'\) lần lượt là trung điểm \(AB'\) và \(B'C'\) nên \(G\) là trọng tâm của tam giác \(AB'C'\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu