Bài 2 trang 68 SGK Giải tích 12

Bình chọn:
4.3 trên 24 phiếu

Giải bài 2 trang 68 SGK Giải tích 12. Tính:

Đề bài

Tính:

a) \({4^{log_{2}3}}\);                       b) \({27^{log_{9}2}}\);

c) \({9^{log_{{\sqrt 3 }}2}}\)                      d) \({4^{log_{8}27}}\);.

Phương pháp giải - Xem chi tiết

+) Công thức lũy thừa:  \({\left( {{a^m}} \right)^n} = {a^{m.n}};\;\;\sqrt {{a^m}}  = {a^{\frac{m}{2}}}.\)

+) Sử dụng công thức logarit:  \({a^{{{\log }_a}b}} = b; \, \, {\log _a}{b^n} = n{\log _a}b;\;\;{\log _{{a^m}}}b = \frac{1}{m}{\log _a}b .\)

Lời giải chi tiết

a) \({4^{lo{g_2}3}} = {\left( {{2^2}} \right)^{lo{g_2}3}} = {\left( {{2^{lo{g_2}3}}} \right)^2} = {3^2} = 9\).

\(\eqalign{ b) & {27^{lo{g_9}2}} = {\left( {{3^3}} \right)^{lo{g_9}2}} = {\left( {{9^{{1 \over 2}}}} \right)^{3lo{g_9}2}} \cr & = {\left( {{9^{lo{g_9}2}}} \right)^{{3 \over 2}}} = {2^{{3 \over 2}}} = 2\sqrt 2 \cr} \)

c) \({9^{lo{g_{\sqrt 3 }}2}} = {\left( {{{\left( {\sqrt 3 } \right)}^4}} \right)^{lo{g_{\sqrt 3 }}2}} = {\left( {{{\left( {\sqrt 3 } \right)}^{lo{g_{\sqrt 3 }}2}}} \right)^4} = {2^4} \)\(= 16\)

d)  Có \({\rm{lo}}{{\rm{g}}_8}{\rm{27 = }}lo{g_{{2^3}}}{3^3} = {3 \over 3}lo{g_2}3 = {\rm{lo}}{{\rm{g}}_2}{\rm{3}}\)

nên \({4^{lo{g_8}27}} = {\left( {{2^2}} \right)^{lo{g_2}3}} = {\left( {{2^{lo{g_2}3}}} \right)^2} = {3^2} = 9\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan