Bài 2 trang 58 sgk đại số và giải tích 11


Tìm hệ số của

Bài 2. Tìm hệ số của \(x^3\) trong khai triển của biểu thức: \({\left( {x + {2 \over {{x^2}}}} \right)^6}\).

Bài giải:

\({\left( {x + {2 \over {{x^2}}}} \right)^6} = \sum\limits_{k = 0}^{ 6} {C_6^k} .{x^{6 - k}}{\left( {{2 \over {{x^2}}}} \right)^k} = \sum\limits_{k = 0}^{ 6} {C_6^k} {.2^k}.{x^{6 - 3k}}\)

Trong tổng này, số hạng \(\sum\limits_{k = 0}^{ 6} {C_6^k} {.2^k}.{x^{6 - 3k}}\) có số mũ của \(x\) bằng \(3\) khi và chỉ khi

\(\left\{\begin{matrix} 6 - 3k = 3& & \\ 0 \leq k \leq 6& & \end{matrix}\right.\)\(  ⇔ k = 1\).

Do đó hệ số của \(x^3\) trong khai triển của biểu thức đã cho là:

\(2C_6^1 = 2.6 = 12\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu