Bài 2 trang 18 sgk hình học 12


Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).

Bài 2. Cho hình lập phương \((H)\). Gọi \((H’)\) là hình bát diện đều có các đỉnh là tâm các mặt của \((H)\). Tính tỉ số diện tích toàn phần của \((H)\) và \((H’)\).

Giải 

Giả sử khối lập phương có cạnh bằng \(a\). Khi đó diện tích toàn phần của nó là: \(S_1 = 6. a^2\)

Xét bát diện đều thu được, khi đó diện tích toàn phần của nó là \(8\) lần diện tích tam giác đều \(MQE\) (hình vẽ)

Xét tam giác \(ACD’\), ta có \(M, Q\) lần lượt là trung điểm của \(AC\) và \(AD’\) nên \(MQ\) là đường trung bình của tam giác \(ACD’\), do đó \(MQ = {1 \over 2}C{\rm{D}}' = {1 \over 2}\sqrt 2a \) 

Ta có \({S_{AMQE}} = {1 \over 2}{\left( {{1 \over 2}\sqrt 2a } \right)^2}.{{\sqrt 3 } \over 2} = {1 \over 8}{a^2}\sqrt 3 \) 

Diện tích xung quanh của bát diện đều là: \({S_2} = 8.{1 \over 8}.{a^2}\sqrt 3  = {a^2}\sqrt 3 \)

Do đó: \({{{S_1}} \over {{S_2}}} = {{6{{\rm{a}}^2}} \over {a\sqrt 3 }} = 2\sqrt 3 \) 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu