Bài 2 trang 168 sách giáo khoa Đại số và Giải tích 11

Bình chọn:
4.3 trên 16 phiếu

2. Giải các bất phương trình sau:

Bài 2. Giải các bất phương trình sau:

a) \(y'<0\) với \({{{x^2} + x + 2} \over {x - 1}}\)

b) \(y'≥0\) với \(y =  \frac{x^{2}+3}{x+1}\);

c) \(y'>0\) với \(y =  \frac{2x-1}{x^{2}+x+4}\).

Lời giải:

a) Ta có \( y'=\frac{(x^{2}+x+2)'.(x-1)-(x^{2}+x+2).(x-1)'}{(x-1)^{2}}\) = \( \frac{x^{2}-2x-3}{(x-1)^{2}}\)

Do đó, \(y'<0\Leftrightarrow  \frac{x^{2}-2x-3}{(x-1)^{2}}\)

\( \Leftrightarrow \left\{ \matrix{
x \ne 1 \hfill \cr
- 1 < x < 3 \hfill \cr} \right. \Leftrightarrow \)\(x∈ (-1;1) ∪ (1;3)\).

b) Ta có \( y'=\frac{(x^{2}+3)'.(x+1)-(x^{2}+3).(x+1)'}{(x+1)^{2}}\) = \( \frac{x^{2}+2x-3}{(x+1)^{2}}\).

Do đó, \(y'≥0 \Leftrightarrow   \frac{x^{2}+2x-3}{(x+1)^{2}}≥0 \)

\( \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
\left[ \matrix{
x \ge 1 \hfill \cr
x \le - 3 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 1 \hfill \cr
x \le - 3 \hfill \cr} \right. \Leftrightarrow x∈ (-∞;-3] ∪ [1;+∞)\).

c).Ta có \( y'=\frac{(2x-1)'.(x^{2}+x+4)-(2x-1).(x^{2}+x+4)'}{(x^{2}+x+4)}=\frac{-2x^{2}+2x+9}{(x^{2}+x+4)}\).

Do đó, \(y'>0  \Leftrightarrow  \frac{-2x^{2}+2x+9}{(x^{2}+x+4)} >0\Leftrightarrow  -2x^2+2x +9>0 \)\(\Leftrightarrow    \frac{1-\sqrt{19}}{2} < x <  \frac{1+\sqrt{19}}{2}\Leftrightarrow   x∈  \left ( \frac{1-\sqrt{19}}{2};\frac{1+\sqrt{19}}{2} \right )\)

Vì \(x^2+x +4 =\) \( \left ( x+\frac{1}{2} \right )^{2}\)+ \( \frac{15}{4} >0\), với \(∀ x ∈ \mathbb R\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan