Bài 2 trang 121 sgk đại số 11


Chứng minh rằng lim ...

Bài 2. Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \frac{1}{n^{3}}\) với mọi \(n\). Chứng minh rằng \(\lim u_n=1\).

Giải:

Vì \(\lim \frac{1}{n^{3}}\) = 0 nên |\(\frac{1}{n^{3}}\)| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Mặt khác, ta có \(|u_n-1| < \frac{1}{n^{3}}\) = |\(\frac{1}{n^{3}}\)| với mọi \(n\). Nếu \(|u_n-1|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim (u_n-1) = 0\). Do đó \(\lim u_n= 1\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu