Bài 2 sgk trang 40 hình học 10

Bình chọn:
3.7 trên 13 phiếu

Cho AOB là tam giác cân tại O có OA = a và có các đường cao OH và AK.

Bài 2. Cho \(AOB\) là tam giác cân tại \(O\) có \(OA = a\) và có các đường cao \(OH\) và \(AK\). Giả sử \(\widehat {AOH} = \alpha \). Tính \(AK\) và \(OK\) theo \(a\) và \(α\).

Giải

Do tam giác \(OAB\) cân tại \(O\) nên ta có \(\widehat {AOB} = 2\alpha \) 

Tam giác \(OKA\)  vuông tại \(K\) nên ta có:

\(AK = OA.\sin \widehat {AOK} \Rightarrow AK = a.\sin 2\alpha \)

\(OK = OA.cos\widehat {AOK} \Rightarrow OK = a.cos2\alpha \)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan