Bài 19 trang 68 - Sách giáo khoa toán 8 tập 2

Bình chọn:
4.2 trên 117 phiếu

Bài 19. Cho hình thang ABCD (AB // CD). Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự là E và F. Chứng minh rằng:

Bài 19. Cho hình thang ABCD (AB // CD).

Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự là E và F.

Chứng minh rằng:

a) \(\frac{AE}{ED}\) = \(\frac{BF}{FC}\);      b) \(\frac{AE}{AD}\) = \(\frac{BF}{BC}\)    c) \(\frac{DE}{DA}\) = \(\frac{CF}{CB}\).

Giải:

a) Nối AC cắt EF tại O

∆ADC có EO // DC => \(\frac{AE}{ED}\) = \(\frac{AO}{OC}\)       (1)

∆ABC có OF // AB => \(\frac{AO}{OC}\) = \(\frac{BF}{FC}\)         (2)

Từ 1 và 2 => \(\frac{AE}{ED}\) = \(\frac{BF}{FC}\)

b) Từ  \(\frac{AE}{ED}\) = \(\frac{BF}{FC}\) => \(\frac{AE}{ED +AE}\)= \(\frac{BF}{FC + BF}\)

hay  \(\frac{AE}{AD}\)=\(\frac{BF}{BC}\)  

c) Từ \(\frac{AE}{ED}\) = \(\frac{BF}{FC}\)  => \(\frac{AE+ED}{ED}\)= \(\frac{BF+FC}{FC}\)

=> \(\frac{AD}{ED}\) =  \(\frac{BF}{FC}\) hay \(\frac{ED}{AD}\) = \(\frac{FC}{BC}\)

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan