Bài 18 trang 75 sgk toán 8 tập 1

Bình chọn:
5 trên 206 phiếu

Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD

18. Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB = CD) có AC = BD.

Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng mình rằng:

a) ∆BDE là tam giác cân.

b) ∆ACD = ∆BDC.

c) Hình thang ABCD là hình thang cân.

Bài giải:

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

           

             AC = BE   (1)     

Theo giả thiết AC = BD    (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra       (3)

  ∆BDE cân tại B (câu a) nên       (4)

Từ (3) và (4) suy ra 

Xét  ∆ACD và  ∆BCD có AC = BD (gt)

                (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra 

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan