Bài 16 trang 67 - Sách giáo khoa toán 8 tập 2


Bài 16. Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng

Bài 16. Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng \(\frac{m}{n}\).

Giải:

Kẻ AH ⊥ BC 

Ta có: 

SABD = \(\frac{1}{2}\)AH.BD

SADC  = \(\frac{1}{2}\)AH.DC

=>\(\frac{S_{SBD}}{S_{ADC}}\) = \(\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}\) = \(\frac{BD}{DC}\)

Mặt khác: AD là đường phân giác của ∆ABC

=> \(\frac{BD}{DC}\)= \(\frac{AB}{AC}\) = \(\frac{m}{n}\).

Vậy \(\frac{S_{SBD}}{S_{ADC}}\) = \(\frac{m}{n}\)

>>>>> Bí kíp luyện thi 9 vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô Top 1 trên cả nước