Bài 16 trang 181 SGK Đại số và giải tích 11

Bình chọn:
4.1 trên 8 phiếu

Giải các phương trình

Bài 16. Giải các phương trình

a) \(f’(x) = g(x)\) với \(f(x) = \sin^3 2x\) và \(g(x) = 4\cos2x – 5\sin4x\)

b) \(f’(x) = 0\) với \(f(x) = 20\cos3x + 12\cos5x – 15\cos4x\).

Trả lời:

a) Ta có: \(f(x) = \sin^3 2x\) 

\(⇒  f’(x) – 3\sin^2 2x (\sin2x)’ = 6\sin^2 2x \cos2x\)

Do đó:

\(\eqalign{
& f'(x) = g(x) \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 5\sin 4x \cr
& \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 10\sin 2x\cos 2x \cr
& \Leftrightarrow \cos 2x(3{\sin ^2}2x + 5\sin 2x - 2) = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0(1) \hfill \cr
3{\sin ^2}2x + 5\sin 2x - 2 = 0 \hfill \cr} \right.(2) \cr} \)

Giải (1): \(2x = {\pi  \over 2} + k\pi (k \in \mathbb Z) \Leftrightarrow x = {\pi  \over 4} + {{k\pi } \over 2} (k \in \mathbb Z)\)

Giải (2): \(sin 2x = -2\) ( loại ) hoặc \(\sin 2x = {1 \over 3}\)

\(\eqalign{
& \sin 2x = {1 \over 3} \Leftrightarrow \left[ \matrix{
2x = \arcsin ({1 \over 3}) + k2\pi \hfill \cr
2x = \pi - \arcsin ({1 \over 3}) + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z \cr} \)

Tóm lại, phương trình đã cho có ba nghiệm là:

\(\left[ \matrix{
x = {\pi \over 4} + {{k\pi } \over 2} \hfill \cr
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z\)

b) Ta có: \(f’(x) = -60sin 3x – 60 sin 5x + 60 sin4x = 0\)

Do đó:

\(\eqalign{
& f'(x) = 0 \Leftrightarrow - \sin 3x - \sin 5x + \sin 4x = 0 \cr
& \Leftrightarrow \sin 5x + \sin 3x - \sin 4x=0 \cr
& \Leftrightarrow 2\sin 4x{\mathop{\rm cosx}\nolimits} - sin4x = 0 \cr
& \Leftrightarrow sin4x(2cosx - 1) = 0 \cr} \)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
\sin 4x = 0 \hfill \cr
{\mathop{\rm cosx}\nolimits} = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
4x = k\pi \hfill \cr
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 4} \hfill \cr
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan