Bài 146 trang 57 sgk toán 6 tập 1

Bình chọn:
5 trên 104 phiếu

Tìm số tự nhiên x, biết rằng 112

Bài 146. Tìm số tự nhiên \(x\), biết rằng \(112\) \(\vdots\) \(x\), \(140\) \(\vdots\) \(x\) và \(10 < x < 20\).

Bài giải:

Theo đầu bài \(112\) \(\vdots\) \(x\), \(140\) \(\vdots\) \(x\) do đó \(x\) là một ước chung của \(112\) và \(140\).

Ta có: \(112 = 2^4.  7\);

          \(140 = 2^2. 5 .  7\)

           \(ƯCLN (112, 140) = 2^2.  7 = 28\).

Mỗi ước chung của \(112\) và \(140\) cũng là ước của \(28\).

\(Ư(28)=\left\{ {1;2;4;7;14;28} \right\}\).

Theo đầu bài \(10 < x < 20\) mà trong số các ước của \(28\) chỉ có \(14\) thỏa mãn điều kiện này, do đó \(x=14\)

Vậy \(x = 14\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 6 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 6, mọi lúc, mọi nơi môn Toán, Văn, Anh. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan