Bài 12 trang 42 sgk Toán 9 tập 2

Bình chọn:
4.1 trên 25 phiếu

Giải các phương trình sau:

Bài 12. Giải các phương trình sau:

a) \({x^2} - 8 = 0\)             

b) \(5{x^2} - 20 = 0\) ;                   

c) \(0,4{x^2} + 1 = 0\);

d) \(2{x^2} + \sqrt 2 x = 0\);        

e) \( - 0.4{x^2} + 1,2x = 0\).

Bài giải:

a) \({x^2} - 8 = 0 \Leftrightarrow {x^2} = 8 \Leftrightarrow x =  \pm 2\sqrt 2 \).

b) \(5{x^2} - 20 = 0 \Leftrightarrow 5{x^2} = 20 \Leftrightarrow {x^2} = 4 \Leftrightarrow x =  \pm 2\).

c) \(0,4{x^2} + 1 = 0 \Leftrightarrow 0,4{x^2} =  - 1 \Leftrightarrow {x^2} =  - {{10} \over 4}\), phương trình vô nghiệm

d) 

\(2{x^2} + \sqrt 2 x = 0 \Leftrightarrow x(2x + \sqrt 2 ) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - {{\sqrt 2 } \over 2} \hfill \cr} \right.\)

Phương trình có 2 nghiệm là: \({x_1} = 0,{x_2} =  - {{\sqrt 2 } \over 2}\)

e)  \( - 0.4{x^2} + 1,2x = 0 \Leftrightarrow  - 4{x^2} + 12x = 0\)

\(\Leftrightarrow  - 4x(x - 3) = 0\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 3 \hfill \cr} \right.\)

Vậy phương trình có 2 nghiệm là: \({x_1} = 0,{x_2} = 3\) 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan