Bài 12 trang 42 sgk Toán 9 tập 2


Giải các phương trình sau:

Bài 12. Giải các phương trình sau:

a) \({x^2} - 8 = 0\)             

b) \(5{x^2} - 20 = 0\) ;                   

c) \(0,4{x^2} + 1 = 0\);

d) \(2{x^2} + \sqrt 2 x = 0\);        

e) \( - 0.4{x^2} + 1,2x = 0\).

Bài giải:

a) \({x^2} - 8 = 0 \Leftrightarrow {x^2} = 8 \Leftrightarrow x =  \pm 2\sqrt 2 \).

b) \(5{x^2} - 20 = 0 \Leftrightarrow 5{x^2} = 20 \Leftrightarrow {x^2} = 4 \Leftrightarrow x =  \pm 2\).

c) \(0,4{x^2} + 1 = 0 \Leftrightarrow 0,4{x^2} =  - 1 \Leftrightarrow {x^2} =  - {{10} \over 4}\), phương trình vô nghiệm

d) 

\(2{x^2} + \sqrt 2 x = 0 \Leftrightarrow x(2x + \sqrt 2 ) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - {{\sqrt 2 } \over 2} \hfill \cr} \right.\)

Phương trình có 2 nghiệm là: \({x_1} = 0,{x_2} =  - {{\sqrt 2 } \over 2}\)

e)  \( - 0.4{x^2} + 1,2x = 0 \Leftrightarrow  - 4{x^2} + 12x = 0\)

\(\Leftrightarrow  - 4x(x - 3) = 0\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 3 \hfill \cr} \right.\)

Vậy phương trình có 2 nghiệm là: \({x_1} = 0,{x_2} = 3\) 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu