Bài 11 trang 71 SGK Hình học 10 nâng cao

Bình chọn:
3.5 trên 4 phiếu

Cho hai đường tròn

Cho hai đường tròn \((O\,;\,R)\) và \(({O'}\,;\,{R'})\) cắt nhau tại hai điểm A và B. Trên đường thẳng AB, lấy điểm C ở ngoài hai đường tròn và kẻ hai tiếp tuyến CE, CF đến hai đường tròn đó ( E, F là các tiếp điểm). Chứng minh rằng CE = CF.

Hướng dẫn trả lời

 

Ta có

\(\eqalign{
& \,\,\,\,\,{\wp _{{C_{/(O)}}}} = CA.CB = C{E^2} \cr
& \,\,\,\,\,{\wp _{{C_{/({O\,'})}}}} = CA.CB = C{F^2} \cr
& \Rightarrow \,\,\,CE = CF \cr} \)

loigiaihay.com

Các bài liên quan