Bài 11 trang 180 SGK Đại số và giải tích 11

Bình chọn:
3 trên 7 phiếu

Cho hai dãy số (un), (vn) với

Bài 11. Cho hai dãy số \((u_n)\), \((v_n)\) với 

\({u_n} = {n \over {{n^2} + 1}}\) và \({v_n} = {{n\cos {\pi  \over n}} \over {{n^2} + 1}}\)

a) Tính \(\lim u_n\)

b) Chứng minh rằng \(\lim v_n= 0\)

Trả lời:

a) Ta có:

\(\lim {u_n} = \lim {n \over {{n^2} + 1}} = \lim {{{n^2}({1 \over n})} \over {{n^2}(1 + {1 \over {{n^2}}})}} = \lim {{{1 \over n}} \over {1 + {1 \over {{n^2}}}}} = {0 \over 1} = 0\)

b) Ta có:

 \(\lim {\pi  \over n} = 0 \Rightarrow \lim \cos {\pi  \over n} = \cos 0 = 1\)

Vậy \(\lim {v_n} = \lim {n \over {{n^2} + 1}}\lim \cos {\pi  \over n} = 0.1 = 0(dpcm)\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan