Bài 10 trang 54 sách giáo khoa hình học lớp 11


Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

Bài 10. Cho hình chóp \(S. ABCD\) có \(AB\) và \(CD\) không song song. Gọi \(M\) là một điểm thuộc miền trong của tam giác \(SCD\)

a) Tìm giao điểm \(N\) của đường thẳng \(CD\) và mặt phẳng \((SBM)\)

b) Tìm giao tuyến của hai mặt phẳng \((SBM)\) và \((SAC)\)

c) Tìm giao điểm \(I\) của đường thẳng \(BM\) và mặt phẳng \((SAC)\)

d) Tìm giao điểm \(P\) của \(SC\) và mặt phẳng \((ABM)\), từ đó suy ra giao tuyến của hai mặt phẳng \((SCD)\) và \((ABM)\)

Lời giải:

a) Trong \((SCD)\) kéo dài \(SM\) cắt \(CD\) tại \(N\). Do đó: \(N=CD\cap(SBM)\)

b) \((SBM) ≡ (SBN)\). 

Trong \((ABCD)\) gọi \(O=AC\cap BN\)

Do đó: \(SO=(SAC)\cap(SBM)\).

c) Trong \((SBN)\) gọi \(I\) là giao của \(MB\) và \(SO\).

Do đó: \(I=BM\cap (SAC)\)

d) Trong \((ABCD)\) , gọi giao điểm của \(AB\) và \(CD\) là \(K\).

Trong \((SCD)\), gọi \(P= MK\cap SC\)

Do đó: \(P=SC\cap (ABM)\)

Trong \((SDC)\) gọi \(Q=MK\cap SD\)

Từ đó suy ra được giao tuyến của hai mặt phẳng \((SCD)\) và (\(ABM)\) là \(KQ\).

loigiaihay.com

                                                                                                                        

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu