Bài 10 trang 12 sgk toán 9 tập 2.


Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

10. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right.\);                                   b) \(\left\{\begin{matrix} \frac{1}{3}x - y = \frac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\).

Bài giải:

a) \(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right.\)  ⇔ \(\left\{\begin{matrix} 4y = 4x - 2 & & \\ 2y = 2x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = x - \frac{1}{2}& & \\ y = x - \frac{1}{2} & & \end{matrix}\right.\)

Ta có:

a = a' = 1, b = b' = - \(\frac{1}{2}\).

=> Hai đường thẳng trùng nhau.

Vậy hệ phương trình có vô số nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ là trùng nhau.

b) \(\left\{\begin{matrix} \frac{1}{3}x - y = \frac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = \frac{1}{3}x - \frac{2}{3} & & \\ 3y = x - 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = \frac{1}{3}x - \frac{2}{3} & & \\ y = \frac{1}{3}x - \frac{2}{3} & & \end{matrix}\right.\)

Ta có a = a' = \(\frac{1}{3}\), b = b' = -\(\frac{2}{3}\) nên hai đường thẳng trùng nhau.

Vậy hệ phương trình có vô số nghiệm.

>>>>> Học tốt lớp 10 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu