Bài 1 trang 92 sgk toán 11


Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát

Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát ucho bởi công thức:

a) un = \( \frac{n}{2^{n}-1}\);                                  b) un = \( \frac{2^{n}-1}{2^{n}+1}\)

c) un = \( (1+\frac{1}{n})^{n}\);                                d) un = \( \frac{n}{\sqrt{n^{2}+1}}\)

Hướng dẫn giải:

a) Năm số hạng đầu của dãy số là u1 = 1; u2 = \( \frac{2}{3}\), \( u_{3}=\frac{3}{7}; u_{4}=\frac{4}{15};u_{5}=\frac{5}{31}\)

b) Năm số hạng đầu của dãy số là \( u_{1}=\frac{1}{3},u_{2}=\frac{3}{5};u_{3}=\frac{7}{9};u_{4}=\frac{15}{17};u_{5}=\frac{31}{33}\)

c)  Năm số hạng đầu của dãy số là

                     u1 = 2; \( u_{2}=\frac{9}{4};u_{3}=\frac{64}{27};u_{4}=\frac{625}{256};u_{5}=\frac{7776}{3125}\)

d) Năm số hạng đầu của dãy số là 

                     \( u_{1}=\frac{1}{\sqrt{2}};u_{2}=\frac{2}{\sqrt{5}};u_{3}=\frac{3}{\sqrt{10}};u_{4}=\frac{4}{\sqrt{17}};u_{5}=\frac{5}{\sqrt{26}}\)

>>>>> Học tốt lớp 11 các môn Toán, Lý, Anh, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu