Bài 1 trang 92 sgk toán 11


Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát

Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát ucho bởi công thức:

a) \(u_n=\frac{n}{2^{n}-1}\);                             b) \(u_n= \frac{2^{n}-1}{2^{n}+1}\)

c) \(u_n=(1+\frac{1}{n})^{n}\);                    d) \(u_n \frac{n}{\sqrt{n^{2}+1}}\)

Hướng dẫn giải:

a) Năm số hạng đầu của dãy số là \(u_1= 1\); \(u_2= \frac{2}{3}\), \( u_{3}=\frac{3}{7}; u_{4}=\frac{4}{15};u_{5}=\frac{5}{31}\)

b) Năm số hạng đầu của dãy số là \( u_{1}=\frac{1}{3},u_{2}=\frac{3}{5};u_{3}=\frac{7}{9};u_{4}=\frac{15}{17};u_{5}=\frac{31}{33}\)

c)  Năm số hạng đầu của dãy số là

\(u_1=2\); \( u_{2}=\frac{9}{4};u_{3}=\frac{64}{27};u_{4}=\frac{625}{256};u_{5}=\frac{7776}{3125}\)

d) Năm số hạng đầu của dãy số là 

                     \( u_{1}=\frac{1}{\sqrt{2}};u_{2}=\frac{2}{\sqrt{5}};u_{3}=\frac{3}{\sqrt{10}};u_{4}=\frac{4}{\sqrt{17}};u_{5}=\frac{5}{\sqrt{26}}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu