Bài 1 trang 89 SGK Giải tích 12

Bình chọn:
4.6 trên 13 phiếu

Giải bài 1 trang 89 SGK Giải tích 12. Giải các bất phương trình mũ

Đề bài

Giải các bất phương trình mũ:

a) \(2^{-x^{2}+3x}< 4\);

b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x} ≥ \frac{9}{7}\);

c) \({3^{x + 2}} +{3^{x - 1}} \le 28\);

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\).

Phương pháp giải - Xem chi tiết

a) Đưa về cùng cơ số 2, giải bất phương trình mũ cơ bản: \({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\).

b) Đưa về cùng cơ số \({7} \over {9}\), giải bất phương trình mũ cơ bản: \({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\).

c) Sử dụng công thức \({a^m}.{a^n} = {a^{m + n}}\), làm xuất hiện nhân tử chung ở VT. Đưa bất phương trình ban đầu về dạng phương trình mũ cơ bản.

d) Giải bất phương trình mũ bằng cách đặt ẩn phụ: \(t = {2^x}\,\,\left( {t > 0} \right)\).

Lời giải chi tiết

\(\begin{array}{l}a)\,\,\,{2^{ - {x^2} + 3x}} < 4\\\Leftrightarrow {2^{ - {x^2} + 3x}} < {2^2}\\\Leftrightarrow - {x^2} + 3x < 2\\\Leftrightarrow {x^2} - 3x + 2 > 0\\\Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)

\(\begin{array}{l}b)\,\,\,{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7}\\\Leftrightarrow {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge {\left( {\frac{7}{9}} \right)^{ - 1}}\\\Leftrightarrow 2{x^2} - 3x \le - 1\\\Leftrightarrow 2{x^2} - 3x + 1 \le 0\\\Leftrightarrow \frac{1}{2} \le x \le 1\end{array}\).

Vậy tâp nghiệm của bất phương trình là: \(S = \left[ {\frac{1}{2};1} \right]\).

\(\begin{array}{l}c)\,\,\,\,{3^{x + 2}} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}{.3^3} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}\left( {{3^3} + 1} \right) \le 28\\\Leftrightarrow {3^{x - 1}}.28 \le 28\\\Leftrightarrow {3^{x - 1}} \le 1\\\Leftrightarrow {3^{x - 1}} \le {3^0}\\\Leftrightarrow x - 1 \le 0\\\Leftrightarrow x \le 1\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right]\).

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\)

Đặt \(t = 2^x >0\), bất phương trình đã cho trở thành 

\(\begin{array}{l}{t^2} - 3t + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}t > 2\\t < 1\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{2^x} > 2\\{2^x} < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} > {2^1}\\{2^x} < {2^0}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < 0\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan