Bài 1 trang 89 sgk giải tích 12

Bình chọn:
4.6 trên 13 phiếu

Bài 1. Giải các bất phương trình mũ

Bài 1. Giải các bất phương trình mũ:

a) \(2^{-x^{2}+3x}< 4\);

b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x} ≥ \frac{9}{7}\);

c) \({3^{x + 2}} +{3^{x - 1}} \le 28\);

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\).

Giải:

a) \(2^{-x^{2}+3x} < 4 ⇔ 2^{-x^{2}+3x} < 2^2⇔ - {x^2} + {\rm{ }}3x{\rm{ }} < {\rm{ }}2\)

\(⇔{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}2{\rm{ }} > {\rm{ }}0 ⇔ x > 2\) hoặc \(x < 1\).

b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x} ≥\) \(\frac{9}{7}\) \(⇔ \left ( \frac{7}{9} \right )^{2x^{2}-3x}  ≥  (\frac{7}{9})^{-1}\) 

\(⇔ 2{x^2}-{\rm{ }}3x{\rm{ }} \le {\rm{ }} - 1 \Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}1{\rm{ }} \le {\rm{ }}0\)

\(\Leftrightarrow {\rm{ }}x \in {\rm{ }}\left[ {1;2} \right]\).

 c)  \({3^{x + 2}} + {\rm{ }}{3^{x - 1}} \le {\rm{ }}28 \Leftrightarrow {\rm{ }}{3^{x - 1}}(3^3+1){\rm{ }} \le {\rm{ }}28\)

\(\Leftrightarrow{3^{x - 1}} \le {\rm{ }}{3^{0}} \Leftrightarrow {\rm{ }}x - {\rm{ }}1 \le {\rm{ }}0 \Leftrightarrow {\rm{ }}x \le {\rm{ }} - 1\).

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\)

Đặt \(t = 2^x >0\), bất phương trình đã cho trở thành 

\({t^2}-{\rm{ }}3t{\rm{ }} + {\rm{ }}2{\rm{ }} > 0 \Leftrightarrow {\rm{ }}0{\rm{ }} < {\rm{ }}t{\rm{ }} < {\rm{ }}1\) hoặc \(t > 2\).

Trở lại biến cũ ta được 

\({2^{x}} < {\rm{ }}1 \Leftrightarrow {2^{x}} < {\rm{ }}{2^0} \Leftrightarrow {\rm{ }}x{\rm{ }} < {\rm{ }}0\)

hoặc \({2^{x}} > {\rm{ }}2 \Leftrightarrow {\rm{ }}{2^{x}} > {\rm{ }}{2^1} \Leftrightarrow {\rm{ }}x > {\rm{ }}1\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan