Tuyensinh247.com giảm giá 50% chỉ duy nhất 1 ngày 20/11 - KM lớn nhất 2017
Xem ngay

Bắt đầu sau: 08:27:56

Bài 1 trang 59 sách giáo khoa hình học lớp 11


Cho tứ diện ABCD. Gọi P, Q, R, S là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD, DA. Chứng minh rằng nếu bốn điểm P, Q, R, S đồng phẳng thì

Bài 1. Cho tứ diện \(ABCD\). Gọi \(P, Q, R, S\) là bốn điểm lần lượt lấy trên bốn cạnh \(AB, BC, CD, DA\). Chứng minh rằng nếu bốn điểm \(P, Q, R, S\) đồng phẳng thì

a) Ba đường thẳng \(PQ, SR, AC\) hoặc song song hoặc đồng quy

b) Ba đường thẳng \(PS, RQ, BD\) hoặc song song hặc đồng quy

Lời giải:

a) Gọi mặt phẳng qua bốn điểm \(P, Q, R, S\) là \((α)\). Ba mặt phẳng \(( α)\), \((ABC)\) và \((ACD)\) đôi một cắt nhau theo các giao tuyến là \(PQ, AC, RS => PQ, AC, RS\) hoặc đôi một song song hoặc đồng quy

b) Chứng minh tương tự ta được ba đường thẳng \(PS, RQ\), và \(BD\) hoặc song song hoặc đồng quy

loigiaihay.com

 

                                                       

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu