Bài 1 trang 30 sách sgk giải tích 12

Bình chọn:
4.3 trên 11 phiếu

Tìm các tiệm cận của đồ thị hàm số:

Bài 1. Tìm các tiệm cận của đồ thị hàm số:

a)  \(y=\frac{x}{2-x}\).                                

b) \(y=\frac{-x+7}{x+1}\).

c)  \(y=\frac{2x-5}{5x-2}\).

d) \(y=\frac{7}{x}-1\).

Giải

a) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} {x \over {2 - x}} =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} {x \over {2 - x}} =  - \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } {x \over {2 - x}} =  - 1;\,\,\mathop {\lim }\limits_{x \to  - \infty } {x \over {2 - x}} =  - 1\) nên đường thẳng \(y = -1\) là tiệm cận ngang của đồ thị hàm số.

b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{ - x + 7}}{{x + 1}} = + \infty ;\,\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{ - x + 7}}{{x + 1}} = - \infty\) nên \(x=-1\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 7}}{{x + 1}} = - 1;\,\mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 7}}{{x + 1}} = - 1\) nên đường thẳng \(y=-1\) là tiệm cận ngang của đồ thị hàm số.

c) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ + }} \frac{{2x - 5}}{{5x - 2}} = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ - }} \frac{{2x - 5}}{{5x - 2}} = + \infty\) nên đường thẳng \(x=\frac{2}{5}\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5};\,\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5}\) nên đồ thị hàm số nhận đường thẳng \(y=\frac{2}{5}\) làm tiệm cận ngang.

d) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{7}{x} - 1} \right) = - 1;\,\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{7}{x} - 1} \right) = - 1\) nên đường thẳng \(y=-1\) là tiệm cận ngang của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{7}{x} - 1} \right) = + \infty ;\,\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{7}{x} - 1} \right) = - \infty\) nên đường thẳng \(x=0\) là tiệm cận đứng của đồ thị hàm số.

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan