Bài 1 trang 23 sách sgk giải tích 12


Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

Bài 1. Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

    a)  trên các đoạn [-4; 4] và [0;5] ;

    b)  trên các đoạn [0;3] và [2;5] ;

    c)  trên các đoạn [2;4] và [-3;-2] ;

    d)  trên đoạn [-1;1] .

Hướng dẫn giải:

a) Hàm số liên tục trên các đoạn [-4;4] và [0;5] nên có GTLN và GTNN trên mỗi đoạn này. Ta có : y’ = 3x2 – 6x – 9 = 3(x2 - 2x – 3) ;

           y’ = 0 ⇔ x2 - 2x – 3 = 0 ⇔ x = -1, x = 3.

         - Do -1 ∈ [-4;4], 3 ∈ [-4;4] nên

 =  max{y(-4), y(4), y(-1), y(3)} = max {-41 ; 15 ; 40 ; 8} = 40 .

 =  min{y(-4), y(4), y(-1), y(3)} = min{-41 ; 15 ; 40 ; 8} = -41 .

         -  Do -1  notin [0;5], 3 ∈ [0;5] nên

         =  max{y(0), y(5), y(3)} = max {35 ; 40 ; 8} = 40 .

       =  min{y(0), y(5), y(3)} = max {35 ; 40 ; 8} = 8 .

         b)  = 56 ,  ,  = 552 ,  = 6 .

         c) Hàm số có tập xác định D = R {1} và liên tục trên các đoạn [2;4] và [-3;-2] thuộc D, do đó có GTLN, GTNN trên mỗi đoạn này. Ta có :

                  

          Do đó  = max {y(2) , y(4)} = max {0 ; } =  ;

                    = min {y(2) , y(4)} = min {0 ; } = 0 .

                    = max {y(-3) , y(-2)} = max {} =  ;

                    = min {y(-3) , y(-2)} = max { ; } =  .

          d) Hàm số có tập xác định D = (-∞ ; ] và liên tục trên đoạn [-1 ; 1] thuộc D, do đó có GTLN, GTNN trên đoạn này. Ta có :

                    , ∀x <  . Do đó :

                    = max {y(-1) , y(1)} = max {3 ; 1} = 3 ;

                    = min {y(-1) , y(1)} = min {3 ; 1} = 1 .

>> Khai giảng Luyện thi ĐH-THPT Quốc Gia 2017 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu, các Trường THPT Chuyên và Trường Đại học.

Bài viết liên quan