Bài 1 trang 23 sách giáo khoa hình học lớp 11


Trong mặt phẳng Oxy cho các điểm A(-3;2), B(-4;5) và C(-1;3)

Bài 1. Trong mặt phẳng Oxy cho các điểm A(-3;2), B(-4;5) và C(-1;3)

a) Chứng minh rằng các điểm A'(2;3), B'(5;4) và C'(3;1) theo thứ tự là ảnh của A, B và C qua phép quay tâm O góc -.

b) Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác ABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc -  và phép đối xứng qua trục Ox. Tìm tọa độ các đỉnh của tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{}

Lời giải:

a) (hình bên)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc -  biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b) ( hình 1.26)

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm

>>>>> Bí kíp học tốt các môn lớp 11 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu

 

Bài viết liên quan