Bài 1 trang 178 SGK Đại số và giải tích 11

Bình chọn:
3.6 trên 8 phiếu

Chứng minh rằng: cos 2(x + k π) = cos 2x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos2x.

Bài 1. Cho hàm số \(y = \cos 2x\)

a) Chứng minh rằng: \(\cos 2(x + k π) = \cos 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị (C) của hàm số \(y = \cos2x\).

b) Viết phương trình tiếp tuyến của đồ thị (C)  tại điểm có hoành độ \(x = {\pi  \over 3}\)

c) Tìm tập xác định của hàm số \(z = \sqrt {{{1 - \cos 2x} \over {1 + {{\cos }^2}2x}}} \)

Trả lời:

a) Ta có: \(\cos 2(x + k π) = \cos (2x + k2 π) = \cos 2x\).

_ Từ kết quả trên ta suy ra hàm số \(y = cos 2x\) là hàm số tuần hoàn có chu kì là \(π\).

_ Do đó, ta chỉ cần vẽ đồ thị hàm số  \(y = cos2x\) trên \([0, π]\) và tịnh tiến nó song song với  trục \(0x\) các đoạn có độ dài là \(π\).

Bảng giá trị đặc biệt

\(x\)

\(0\)

 \({\pi  \over 4}\)  \({\pi  \over 2}\)

            \({{3\pi } \over 4}\)

\(π\)

\(\cos 2x\)

\(1\)

\(0\)

\(-1\)

\(0\)

\(1\)

Đồ thị hàm số :

b) Ta có: \({x_0} = {\pi  \over 3} \Rightarrow {y_0} = \cos {{2\pi } \over 3} =  - {1 \over 2}\)

Ta lại có:

\(\eqalign{
& f'(x) = - 2\sin 2x \cr
& \Rightarrow f'({\pi \over 3}) = - 2\sin {{2\pi } \over 3} = - \sqrt 3 \cr} \)

 Vậy phương trình tiếp tuyến cần tìm là:

\(y + {1 \over 2} =  - \sqrt 3 (x - {\pi  \over 3}) \Leftrightarrow y =  - \sqrt 3  + {{\pi \sqrt 3 } \over 3} - {1 \over 2}\) 

c) Ta có:

\(|cos 2x| ≤ 1\) nên \(1 – cos 2x ≥ 0 ,∀ x ∈ \mathbb R\).

Do đó, tập xác định của hàm số \(z\) là \(\mathbb R\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan