Bài 1 trang 107 - Sách giáo khoa toán 7 tập 1


1. Tính số đo x và y ở các hình 47.48.49,50,51:

Bài 1. Tính số đo \(x\) và \(y\) ở các hình 47.48.49,50,51:

Giải:

Hình 47) 

Theo dịnh lí tổng ba góc trong một tam giác ta được:
\(x + {{90}^0} + {{55}^{0}} = {{180}^0}\)
\(\Rightarrow x = {{180}^0} - \left( {{{90}^0} + {{55}^0}} \right) = {{35}^0}\)

Hình 48) 

Theo dịnh lí tổng ba góc trong một tam giác ta được:

\(x + {\rm{ }}{{40}^0} + {\rm{ }}{{30}^0} = {\rm{ }}{{180}^0}\)
\(= > {\rm{ }}x = {\rm{ }}{{180}^0}{\rm{ - }}\left( {{\rm{ }}{{40}^0} + {\rm{ }}{{30}^0}} \right) = {\rm{ }}{{110}^0}\)

Hình 49)

Theo dịnh lí tổng ba góc trong một tam giác ta được:

\(x + {\rm{ }}x + {\rm{ }}{{50}^0} = 180^0\)
\( \Rightarrow {\rm{ }}2x = {\rm{ }}{{180}^0} - {{50}^0} = {{130}^0}\) 

\(x = {65}^0\)

Hình50) 

Vì \(y\) là góc ngoài tam giác nên ta có:

\(y = {\rm{ }}{60^0} + {\rm{ }}{40^0} = {\rm{ }}{100^0}\)

Hai góc \(x\) và \(\widehat{DKE}\) là hai góc kề bù nên:

\(x + {{40}^0} ={180}^{0}\)

\(x = {{180}^0} - {{40}^{0}} = 140^0\)

Hình 51)

Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta  ABC\) ta có:

\(\widehat A + \widehat B + \widehat C\)

\(({40^0} + {\rm{ }}{40^0}){\rm{ }} + {\rm{ }}{70^0} + {\rm{ }}y{\rm{ }} = {180^0}\)

\(y+  150^0 =180^0\)

\(y = {180^{0}} - {\rm{ }}{150^0} = {\rm{ }}{30^{0}}\)

Áp dụng định lí tổng ba góc trong một tam giác vào \(\Delta  ACD\) ta có:

\(x + {\rm{ }}{40^0} + {\rm{ }}{30^0} = {\rm{ }}{180^0}\)

\(x = {\rm{ }}{180^0} - ({\rm{ }}{40^0} + {\rm{ 3}}{0^0}) = {\rm{ }}{110^0}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 7 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu